
© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

V 01.01 2012-10-11

Salvador Almanza-Garcia

Special Projects - Embedded Software

Vector CANtech, Inc., Novi MI, USA

IEEE SEM GOLD Vice-Chair

Embedded Software Organization:
Architecture and Design

Embedded Systems Workshop 2013

IEEE Computer Society

Southeastern Michigan Section

October 19th,2013

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Objective

 To introduce basic concepts and examples of embedded software
organization, from project planning, project structure, architecture and
design

Note:

 The present material is intended for the audience attending the embedded
systems workshop at Oakland University (mainly students). The content
respect to methodology and/or source code is based on Author previous
experience and current projects related to academics; it is not related
and/or part of Vector CANTech Inc. products and/or tools

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Introduction

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Definitions

Organization [From Dictionary]

 Something made up of elements with varied functions that contribute to
the whole and to collective functions; an organism

 A structure through which individuals cooperate systematically to conduct
business

Embedded Software Organization

 Planning methodology to create a coherent and effective structure in a
software project, by categorizing different software components according
to their specific characteristics, allowing to construct software systems
that are reusable and portable through different hardware platforms and
applications

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Why Software Organization?

Factors driving Embedded Systems Development:

 Demanding and intensive requirements

 Hardware complexity

 Reduced development times; products released to market as soon as
possible

 Cost

 At no least important... Experience

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Why Software Organization?

 The increasing complexity of system requirements as consequence of
technology advancements in semiconductor industry

 Complex requirements critically impact the product life cycle. It is difficult
to satisfy time-to-market demands (reduce development time and cost)

 Optimize and speed-up software development, without compromising
safety, robustness and quality of the software components

 Improve software component reusability through multiple hardware
platforms

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Why Software Organization?

Embedded Systems Development Facts:

 Development time and engineering cost (i.e. NRE) become a problem,
and the product falls behind schedule during the whole product life cycle

 Industry recognizes the importance of making an effort to optimize and
speed-up software development, without compromise robustness and
quality of the software components created to fit into a specific software
architecture

 Software design and development are critical factors directly related to
cost, time to market and the success of an embedded product

 The increasing complexity of embedded systems implies an increase in
specialization of function in the design team [Ganssle, 2008]

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Embedded Software Architecture

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

More definitions…

Software Architecture

 The software architecture of a program or computing system is the
structure or structures of the system, which comprise software elements,
the externally visible properties of those elements, and the relationships
among them. [Bass, Clements & Kazman, 2003]

 Collection of software components that follows an organized structure,
and describes the overall system and it components behavior from a high-
level design perspective

Embedded Software Architecture

 Structure and organization of multiple software components through
different abstraction layers that intend to provide hardware independence,
maximizes code reusability and propagates component behaviors,
between multiple platforms of purpose-specific embedded computers

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

More definitions…

Abstraction

 Simplified view of a system containing only the details important for a
particular purpose [Berzins & Luqi, 1991]

Embedded Software Abstraction

 Design methodology used to hide hardware architecture details from the
application software domain by the isolation and encapsulation of relevant
parameters that describe the behavior of an specific hardware entity, in
order to facilitate software component reusability and portability

Software Component

 In software system, a software component is an entity with well defined
behavior and interacts with other components and modules within the
system

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

More definitions…

Software Interface

 A mechanism used by a software component or module to interact with
the external world (i.e., analog/digital signals, RF) and other software
components

Coupling

 Degree of dependency between different software components within a
system

Cohesion

 Measures the degree of relationship between elements within a software
component.

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

More definitions…

“All architecture is design, but not all design is
architecture. Architecture represents the significant
design decisions that shape a system, where significant
is measured by cost of change” [Grady Booch]

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Software Architecture Structure

EIFSW-IF

APPLICATON

MCU HARDWARE

Example of Layered Architecture

EMBEDDED INFRA-STRUCTURE SOFTWARE (EISW)

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

EMBEDDED INFRA-STRUCTURE

Software Architecture Structure

EISW-IF

APPLICATION

MCU HARDWARE

Example of Layered Architecture

HARDWARE ABSTRACTION

MCU PERIPHERAL DRIVERS

EXTERNAL DRIVERS OS

SYS MANAGEMENT MIDDLEWARE LIBS

EISW

MIDDLEWARE

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Software Layers Description

MCU Peripheral Drivers

 Internal device drivers

 Hardware access to MCU peripherals

 Provide MCU low-level abstraction

 Hardware dependence is high, therefore, reuse is limited at this level

 Provide standard interfaces used by abstraction, OS and external driver
layers

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Software Layers Description

Hardware Abstraction Layer (HAL)

 Provides access to MCU hardware features through peripheral interfaces

 Hides hardware details not relevant to upper software layers

 Interfaces with MCU and external drivers in the low level side, and with
HAL signal interface at the upper side

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Software Layers Description

Middleware and System Management

 Facilitate the interaction between application components and other
modules and/or components within the system:

> Graphics Library

> Networking

> File Systems

> Databases

> Other Middleware components, i.e., off-the-shelf components

 Provides system management

 Power Management

 Memory management

 Diagnostics

 Due to overhead, it is an optional layer

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Software Layers Description

External Drivers

 Implements direct hardware access to external devices through MCU
peripherals

 Meet all functional and timing requirements of the external devices

 Examples:

 EEPROM (I2CTM, SPITM, MicrowireTM, etc)

 External ADCs (i.e. Delta-Sigma high-resolution converters)

 Sensors and actuators

 System Basis Chip (SBC)

 I/O Driver ICs

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Software Layers Description

Embedded Infrastructure SW Interface

 Provides to the application one more level of abstraction and hardware
independence

 Translates logical signals into a meaningful format for the application

 Facilitates the communication between application software components
and/or lower layer modules

 It is application specific

 Due to overhead, it is an optional layer

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Software Layers Description

Application Layer

 Product specific functions

 Contains the software components that implements the desired
functionality (unique) for a specific embedded computer system

 A high-level design methodology ignores the details of the hardware

 Reusability of application components strongly depends in the availability
and efficiency of lower layers

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Software Layers Description

OS

 Provides support for multi-tasking

 Task scheduling and synchronization

 If real-time OS (RTOS)

> Context –switching

> Task preemption

> Interrupt management

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Software Layered Architecture

Advantages:

 Organized and modular design

 If properly applied, an architectural approach allows and facilitate
distributed development; software components being developed by
different teams or COTs from third parties (modular and scalable)

 Once a software architecture has evolved reaching an optimal level of
maturity, the development process can be benefited by reducing
development time and cost.

 Well defined architectures facilitate the usage of more advanced
development techniques and tools, i.e., Model Based and Code Generation

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Software Layered Architecture

Disadvantages:

 Modular layered software architectures and abstraction can consume
significant resources in an embedded system in terms of memory and
performance:

> From few kilobytes of ROM/RAM to the order of several megabytes

> From tenths of MHz to hundreds of MHz (even GHz)

 Transitioning from traditional embedded software development into a
layered software architecture, can result in a large learning curve:

> Adopting a new design and implementation methodology

> Learning new tools

 Initially, the adoption of software layered architectures may result in a
spike in cost and development time, making difficult its acceptance

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Software Architecture Structure

Directory Structure (Simplified View)

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example - Dome Light Control:
Software Architecture and Design

The Following example is for illustration purposes only, and to understand the presented concepts.

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Software Layers Organization

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Directory Structure

Example – Dome Light Control (Overview)

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example of Directory Structure (simplified)

Example – Dome Light Control (Overview)

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Directory Structure

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Directory Structure

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Directory Structure

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Directory Structure

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Directory Structure

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Directory Structure

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Software Component Structure

Software Component

swc_cfg.c swc.c

swc.h
swc_cfg.h

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Software Component Structure

SCW1

swc1_cfg.c swc1.c

swc1.h
swc1_cfg.h

SCW2

swc2_cfg.c swc2.c

swc2.h
swc2_cfg.h

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Component Interaction

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

File Structure

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

GPIO DINs

EISWIF_DoorMonitor

DoorMonitor

HwAbDin

Example – Dome Light Control (Overview)

GpioDrv

Door Monitor Component Interaction

EISWIF_readDrvDoorSwitch() EISWIF_readPassDoorSwitch()

HAL_readDin(DRVDOOR) HAL_readDin(PASSDOOR)

GPIO_readDin(port, pin)

HwCanCommIf

EISWIF_DoorMonitor

EISWIF_getVehSpeed()

HAL_getCanSig(VEHSPEED)

CAN Controller

CanDrv

CAN_rxMsg(VEHINFO)

CAN
XCVR

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

GPIO DINs

EISWIF_KeyMonitor

KeyMonitor

HwAbDin

Example – Dome Light Control (Overview)

GpioDrv

Key Monitor Component Interaction

EISWIF_readDrvDoorSwitch()

HAL_readDin(KEYSTATE)

GPIO_readDin(port, pin)

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

AINs

EISWIF_BatteryVoltageMonitor

BatteryVoltageMonitor

HwAbAin

Example – Dome Light Control (Overview)

AdcDrv

Battery Voltage Monitor Component Interaction

EISWIF_readBatteryVoatgeState()

HAL_readAin(BATTVOLT)

Adc_readAin(channel)

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Dome Light Control Monitor Component Interaction

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Dome Light Control Component Behavior

stm CpApDomeLightControl

DomeLightControl

DomeLightKeyMonitor DomeLightDoorMonitorDoorMonitor

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Dome Light Control Component Behavior

stm DomeLightControl

DomeLightControl

DOME_LIGHT_NORMAL_OPERATIONInitial

DOME_LIGHT_OFF

DOME_LIGHT_BRIGTHNESS_CONTROL

DOME_LIGHT_ON

Initial

DOME_LIGHT_PROTECTION

DOME_LIGHT_UNDERVOLTAGE DOME_LIGHT_OVERVOLTAGE

Final

Initial

TG [DomeLightProtectiontRequests ==

UNDER_VOLTAGE_PROTECT]

T1 [Power Mode != OFF]

TA [DomeLightOnRequest ==

(LIGHT_ON_DOOR_REQUEST OR

LIGHT_ON_KEYOUT_REQUEST)]

TF [DomeLightBrightness < CaDomeLightBrightnessMin]

TD [DomeLightBrightness >=

CaDomeLightBrightnessMin]

TE [DomeLightOnRequest ==

(LIGHT_ON_DOOR_REQUEST OR

LIGHT_ON_KEYOUT_REQUEST)]

T0 [Power Mode == OFF]

TC [CaDlcBrightnessControlEnabled == TRUE]

TL [DomeLightProtectiontRequests ==

UNDER_VOLTAGE_PROTECT]

[Init]

TM [DomeLightProtectiontRequests ==

NO_PROTECT]

TK [DomeLightProtectiontRequests ==

OVER_VOLTAGE_PROTECT]

TI

TH [DomeLightProtectiontRequests ==

OVER_VOLTAGE_PROTECT]

TJ

TB [DomeLightOnRequest ==

LIGHT_OFF_REQUEST]

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Dome Light Control Component Behavior

stm KeyStateMonitor

DomeLightKeyMonitor

KEY_LIGHT_OFF_REQUEST KEY_LIGHT_ON_REQUEST

Initial

Initial

Final

[Init]

T0 [Power Mode == OFF]

TB [KeyOutTimer > 0]

TC [KeyOutTimer Expired]

TC [KeyState transitions to KEY_OUT]

TA [KeyState transitions to KEY_OUT]

[Power Mode != OFF]

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Dome Light Control Component Behavior

stm DoorMonitor

DomeLightDoorMonitor

DOOR_LIGHT_OFF_REQUEST DOOR_LIGHT_ON_REQUEST

Initial

Initial

Final

[Init]

T0 [Power Mode == OFF]

TB [DoorClosedTimer > 0 AND

All Doors are CLOSED]

TC [DoorClosedTimer Expired OR

VehicleSpeed > CaVehicleSpeedMax]

TC [Any Door Is OPEN]

TA [Any DoorTransition from CLOSED to OPEN

AND VehicleSpeed <= CaVehicleSpeedMin]

T1 [Power Mode != OFF]

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Dome Light Control Component Behavior

stm DomeLightVoltageMonitor

Initial

Final

DomeLightVoltageMonitor

Initial

DOME_LIGHT_UNDER_VOLTAGE_PROTECT

DOME_LIGHT_OVER_VOLTAGE_PROTECT

DOME_LIGHT_NO_PROTECT

TC [BatteryVoltageStatus ==

OVER_VOLTAGE]

TA [BatteryVoltageStatus ==

UNDER_VOLTAGE]

TD [BatteryVoltageStatus ==

NORMAL_VOLTAGE]

TF [BatteryVoltageStatus ==

UNDER_VOLTAGE]

TE [BatteryVoltageStatus ==

OVER_VOLTAGE]

TB [BatteryVoltageStatus ==

NORMAL_VOLTAGE]

T0 [Power Mode == OFF]

[Power Mode != OFF]

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Door Monitor Component Behavior

stm CpSaFrontDoorMonitor

Drv DoorMonitor

DRV_DOOR_CLOSED DRV_DOOR_OPEN

Initial

Initial

Final

PassDoorMonitor

PASS_DOOR_CLOSED PASS_DOOR_OPEN

Initial

Initial

Final

[Init]

TB [FrontPassDoorSwitchState ==

SWITCH_OPEN]

TC [FrontPassDoorSwitchState

== SWITCH_CLOSED]

TA [FrontPassDoorSwitchState ==

SWITCH_OPEN]

[Init]

TB [FrontDrvDoorSwitchState ==

SWITCH_OPEN]

TC [FrontDrvDoorSwitchState ==

SWITCH_CLOSED]

TA [FrontDrvDoorSwitchState ==

SWITCH_OPEN]

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Door Monitor Component Behavior

stm DoorSwitchDebounce

DoorSwitchDebounce

DOOR_SWITCH_SCAN

DOOR_SWITCH_DEBOUNCE

DOOR_SWITCH_STATE_UPDATE

Initial

Initial

Final

T0 [From Any State]

TF [Door Switch

Transition Detected]

TG [Update Completed AND

Door Switch State Not Changed]

TD [Decrement

DoorSwitchDebounceTimer]TE [Door Switch

Transition Valid]

TC [Door Switch

Transition Invalid]
TA [Scanning For Door

Switch Transitions]

TB [Door Switch

Transition Detected]

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Key Monitor Component Behavior

stm CpSaKeyMonitor

KeyMonitor

KEY_OUT_POSITION KEY_IN_POSITION

Initial

Initial

Final

[Init]

TC [Key State transition to OUT

Position]

TA [Key State transition to IN

Position]

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Key Monitor Component Behavior

stm KeyInputDebounce

KeyInputDebounce

KEY_INPUT_SCAN

KEY_INPUT_DEBOUNCE

KEY_INPUT_STATE_UPDATE

Initial

Initial

Final

T0 [From Any State]

TF [Key Input

Transition Detected]

TG [Update Completed AND Key

Input State Not Changed]

TD [Decrement

KeyInputDebounceTimer]TE [Key Input

Transition Valid]

TC [Key Input

Transition Invalid]
TA [Scanning For Key

Input Transitions]

TB [Key Input

Transition Detected]

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Example – Dome Light Control (Overview)

Battery Voltage Monitor Component Behavior

stm CpApBatteryVoltageMonitor

Initial

Final

BatteryVoltageMonitor

Initial

BATTERY_UNDER_VOLTAGE

BATTERY_OVER_VOLTAGE

BATTERY_NORMAL_VOLTAGE

TC [BatteryVoltage >

CaBatteryVoltageMax]

TA [BatteryVoltage <

CaBatteryVoltageMin]

[(BatteryVoltage >= CaBatteryVoltageMin) AND

(BatteryVoltage <= CaBatteryVoltageMax)]

TF [BatteryVoltage <

CaBatteryVoltageMin]

TE [BatteryVoltage >

CaBatteryVoltageMax]

TB [(BatteryVoltage >= CaBatteryVoltageMin) AND

(BatteryVoltage <= CaBatteryVoltageMax)]

[Init]

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

So… all this to turn-on a light???

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Conclusions

 The embedded world requires more sophisticated design
methodologies that can satisfy current market demands; it is
important to develop robust architectures (HW/SW) that allow
more efficient and low cost implementations

 The even more exigent and complex requirements trigger the
advances of semiconductor industry, providing more powerful
processors; therefore, software development becomes a more
complex task

 The evolvement of software requires the application of more
advanced software engineering concepts

 Embedded Software development is not a trivial task; a new
culture of development is emerging and requires immediate
attention

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Conclusions

 The embedded world requires more sophisticated design
methodologies that can satisfy current market demands

 The even more exigent and complex requirements trigger the
advances of semiconductor industry, providing more powerful
processors; therefore, software becomes more complex as well

 The evolvement of software requires the application of more
advanced software engineering concepts

 Embedded Software development is not the task of electrical
engineers anymore; neither pure software engineers; new culture
of development is emerging

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Thank you… Any question?

© 2012 . Vector CANtech, Inc.. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide:

Thank you for your attention.

For detailed information about Vector
and our products please have a look at:

www.vector.com

Author:

Salvador Almanza, Special Projects(PES)

salvador.almanza@vector.com

Vector CANtech, Inc.

